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Game Play

Move the bird to eat all 6 jelly beans 
as fast as possible without hitting 

any of the floating heads!



How to Play

Player

Move using arrow keys

Avoid Obstacles
3 horizontally-moving and 3 

vertically-moving. 
Player dies when hit!

Eat Jelly Beans
Bounces around screen with 

randomized direction.
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Summary

Movement Collision
Check if distance between two objects are 
< 120 pixels squared

Player and Target: increase score by 1, 
target is positioned off-screen

Player and Obstacle: game over 

Game Physics

Always boundary checking

Player: vector operations based on 
user input of arrow keys

Targets: vx and vy randomly assigned 
every 80 frame counts (~1.33s) to be 
either -1 or 1

Obstacles: move up/down or left/right 
continuously across the screen



Middle Class + Flyweight
local class = require 'middleclass'

-- bean (target) object
function Bean:initialize(x, y, vx, vy)
   self.v = Vector2:new(x, y)
   self.num = 0
   self.vx = vx
   self.vy = vy
end

-- move target
function Bean:move()
   self.v.x = self.v.x + self.vx
   self.v.y = self.v.y + self.vy
end

Middle Class

- OOP language for Lua by kikito

- allows for classes, class variables, and 

objects

Flyweight

- targets and obstacles

- shared data: 

- prototype table (class)

- ex. methods (movement, etc)

- unshared data:

- object table



Object Pool
- make targets and obstacles once as 

arrays and reuse throughout game

- position targets off screen after 

collision

- reposition to starting location at 

beginning of each round

-- reset location of targets
function resetBeans()
   for i=1,#beans do
      if i<= 3 then
         beans[i].v.x = 80+(i*40)
         beans[i].v.y = 20
      else
         beans[i].v.x = -40+(i*40)
         beans[i].v.y = 80
      end
      beans[i]:drawBeans()
   end
end 

-- do same for obstacles



Game State
local gameState = {}
local currState = "start"

function gameState:setState(state)
   currState = state
end 

- changes ‘currState’ to decide what to perform next, 

using a gameState table

- makes our game clearer and easier to manage 

function gameState:start()
   ...
   --start game when 'Z' pressed
   if btn(4) then

...
      self:setState("play")
   end 
end

function gameState:play()
   if bird.gameOver == 1 then 
      self:setState("over")
   else
      -- display cumulative score
      ...
      --target logic
  ...
      --obstacle logic
  ...
   end 
end 

function gameState:over()
   endGame()
   if btn(4) then 
      restartGame()
      self:setState("start")
   end
end 



Game Loop

function TIC()
   cls(13)
   map(30,0,30,17,0,0)

   if t==1 then 
      makeBeans()
      makeHeads()
   end

   gameState:run()
   
   s=s+1
end

- runs continuously throughout game play

- process user input without blocking

- increments frame count every loop to 

control game speed

→ allows for use on different hardware

Our game loop: function TIC()
  



Game

Click to Play

https://github.swarthmore.edu/pages/CS91S-F24/make-sbyun1-skim9/game/


Thank you
Any Questions?


