
Jellybean Chase
CS91: MAKE project

Hi

Sumin Byun
Stephanie Kim

CS 91S Game Systems
Fall 2024

Table of Contents

01
Introduction
Introduce Our Game

02
Game Physics
Movement and Collision

03
Design Patterns
Middleclass, Flyweight, Game loop,
State, Object pool

04
Overview
Game Link

Game Play

Move the bird to eat all 6 jelly beans
as fast as possible without hitting

any of the floating heads!

How to Play

Player

Move using arrow keys

Avoid Obstacles
3 horizontally-moving and 3

vertically-moving.
Player dies when hit!

Eat Jelly Beans
Bounces around screen with

randomized direction.

original character

our character our character

original character

our character

original character

Studio Ghibli Theme

Summary

Movement Collision
Check if distance between two objects are
< 120 pixels squared

Player and Target: increase score by 1,
target is positioned off-screen

Player and Obstacle: game over

Game Physics

Always boundary checking

Player: vector operations based on
user input of arrow keys

Targets: vx and vy randomly assigned
every 80 frame counts (~1.33s) to be
either -1 or 1

Obstacles: move up/down or left/right
continuously across the screen

Middle Class + Flyweight
local class = require 'middleclass'

-- bean (target) object
function Bean:initialize(x, y, vx, vy)
 self.v = Vector2:new(x, y)
 self.num = 0
 self.vx = vx
 self.vy = vy
end

-- move target
function Bean:move()
 self.v.x = self.v.x + self.vx
 self.v.y = self.v.y + self.vy
end

Middle Class

- OOP language for Lua by kikito

- allows for classes, class variables, and

objects

Flyweight

- targets and obstacles

- shared data:

- prototype table (class)

- ex. methods (movement, etc)

- unshared data:

- object table

Object Pool
- make targets and obstacles once as

arrays and reuse throughout game

- position targets off screen after

collision

- reposition to starting location at

beginning of each round

-- reset location of targets
function resetBeans()
 for i=1,#beans do
 if i<= 3 then
 beans[i].v.x = 80+(i*40)
 beans[i].v.y = 20
 else
 beans[i].v.x = -40+(i*40)
 beans[i].v.y = 80
 end
 beans[i]:drawBeans()
 end
end

-- do same for obstacles

Game State
local gameState = {}
local currState = "start"

function gameState:setState(state)
 currState = state
end

- changes ‘currState’ to decide what to perform next,

using a gameState table

- makes our game clearer and easier to manage

function gameState:start()
 ...
 --start game when 'Z' pressed
 if btn(4) then

...
 self:setState("play")
 end
end

function gameState:play()
 if bird.gameOver == 1 then
 self:setState("over")
 else
 -- display cumulative score
 ...
 --target logic
 ...
 --obstacle logic
 ...
 end
end

function gameState:over()
 endGame()
 if btn(4) then
 restartGame()
 self:setState("start")
 end
end

Game Loop

function TIC()
 cls(13)
 map(30,0,30,17,0,0)

 if t==1 then
 makeBeans()
 makeHeads()
 end

 gameState:run()

 s=s+1
end

- runs continuously throughout game play

- process user input without blocking

- increments frame count every loop to

control game speed

→ allows for use on different hardware

Our game loop: function TIC()

Game

Click to Play

https://github.swarthmore.edu/pages/CS91S-F24/make-sbyun1-skim9/game/

Thank you
Any Questions?

