CS 91S Game Systems

Fall 2024 STRLETR LT
Jellybean Chase

CS91: MAKE project

Sumin Byun
Stephanie Kim

Table of Contents
m Introduction
Introduce Our Game
m Game Physics
Movement and Collision
m Design Patterns
Middleclass, Flyweight, Game loop,

State, Object pool

m Overview
Game Link

Game Play

Move the EBird to ¢at the Jellgbeans!

AvCod ettt ing The FLoating headr.

Frerxrx 'L to start

Move the bird to eat all 6 jelly beans
as fast as possible without hitting
any of the floating heads!

—

How to Play

Studio Ghibli Theme
T T T e e — — = = = — - - {/ ———————————————————— ST g
f Player :
: y \ original character l Eat Jelly Beans
| : I
" Move using arrow keys : Bounces around screen with
t " : randomized direction.

— _ - —— -
—_— Pe— -_— — — —_— —

original character a ' '

our character

a 1
a
T '
RAE ;
\; .

%
¥ 4
W >

our character |

s PP

our character

| Avoid Obstacles \
| |
3 horizontally-moving and 3 ,'
‘ vertically-moving. ,’
3 Player dies when hit! S original character

P— pa—
_ > —_—
— pa— —— — — —_ —

Game Physics

Movement Collision

Always boundary checking S:\zeoclléiii ;ILsggZZere%etween two objects are

Player: vector operations based on

user input of arrow keys Player and Target: increase score by 1,
target is positioned off-screen

Targets: vx and vy randomly assigned
every 80 frame counts (~1.33s) to be Player and Obstacle: game over

either -1 or 1

Obstacles: move up/down or left/right
continuously across the screen PR

w % %

— COMGERATS! = ~Tr'4 agan .~

v You Ffinexhed an 18 seconds!

Score: & Score: 5

Prexsxs "I €0 rextart FPrexx ‘£ £t rextart

Middle Class + Flyweight

Middle Class
- OOP language for Lua by kikito

- allows for classes, class variables, and

objects

Flyweight

- targets and obstacles
- shared data:

- prototype table (class)

- ex. methods (movement, etc)
- unshared data:

- Object table

local class = require "middleclass'

-— bean (target) object
function Bean:initialize(x, y, vx, Vvy)
self.v = Vector2:new(x, Yy)
self.num = 0O
self.vx = vx
self.vy = vy
end

—-— move target
function Bean:move()
self.v.x = self.v.x + self.vx
self.v.y = self.v.y + self.vy
end

Object Pool

- Mmake targets and obstacles once as

arrays and reuse throughout game
- position targets off screen after
collision
- reposition to starting location at

beginning of each round

Total I-l:ll:-r-i'l B

-— reset location of targets
function resetBeans()
for 1=1,#beans do
1f 1<= 3 then

beans[i].v.x = 80+(7*40)
beans[1].v.y = 20

else
beans[i].v.Xx = —-40+(i*40)
beans[1].v.y = 80

end

beans[1] :drawBeans ()

end

end

—— do same for obstacles

Game State

- changes ‘currState’ to decide what to perform next,

using d gamesState table

- makes our game clearer and easier to manage

o
(== | function gameState:play() \\\\
———————————————— . | if bird.gameOver == 1 then
function gameState:start() - | self:setState("over") \
\ l |
\ | else \
--start game when 'Z' pressed -- display cumulative score |
if btn(4) then : ' - |
co : | -—target logic |
self:setState("play") , | L f
end A 1 --obstacle logic ’
‘.end _ /
~ s \ /
B ——— \ end /

— -
— e e e -

local gameState
local currState

1}

"start"

function gameState:setState(state)
currState = state
end

function gameState:over() 1
endGame () \
it btn(4) then \

restartGame () |

self:setState("start") ,
end :

- — — —— - — —

Game Loop

- runs continuously throughout game play

- process user input without blocking

- Increments frame count every loop to
control game speed

— allows for use on different hardware

Total S«ore: B

Our game loop: function TIC()

function TIC()
cls(13)
map(30,0,30,17,0,0)

if t==1 then
makeBeans ()
makeHeads ()
end

gameState:run()

s=s+1
end

= =

Move The Ear-d T 2£at the [Jellgbeanst

AvCoed ottt img The FLoating headx. CIICI(to qu ',

Frexyx £ to FTtart

https://github.swarthmore.edu/pages/CS91S-F24/make-sbyun1-skim9/game/

Thank you

Any Questions?

