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Game Play

Move the EBird to ¢at the Jellgbeans!

AvCod ettt ing The FLoating headr.

Frerxrx 'L to start

Move the bird to eat all 6 jelly beans
as fast as possible without hitting
any of the floating heads!
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How to Play

Studio Ghibli Theme
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Game Physics

Movement Collision

Always boundary checking S:\zeoclléiii ;ILsggZZere%etween two objects are

Player: vector operations based on

user input of arrow keys Player and Target: increase score by 1,
target is positioned off-screen

Targets: vx and vy randomly assigned
every 80 frame counts (~1.33s) to be Player and Obstacle: game over

either -1 or 1

Obstacles: move up/down or left/right
continuously across the screen PR
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Middle Class + Flyweight

Middle Class
- OOP language for Lua by kikito

- allows for classes, class variables, and

objects

Flyweight

- targets and obstacles
- shared data:

- prototype table (class)

- ex. methods (movement, etc)
- unshared data:

- Object table

local class = require "middleclass'

-— bean (target) object
function Bean:initialize(x, y, vx, Vvy)
self.v = Vector2:new(x, Yy)
self.num = 0O
self.vx = vx
self.vy = vy
end

—-— move target
function Bean:move()
self.v.x = self.v.x + self.vx
self.v.y = self.v.y + self.vy
end



Object Pool

- Mmake targets and obstacles once as

arrays and reuse throughout game
- position targets off screen after
collision
- reposition to starting location at

beginning of each round

Total I-l:ll:-r-i'l B

-— reset location of targets
function resetBeans()
for 1=1,#beans do
1f 1<= 3 then

beans[i].v.x = 80+(7*40)
beans[1].v.y = 20

else
beans[i].v.Xx = —-40+(i*40)
beans[1].v.y = 80

end

beans[1] :drawBeans ()

end

end

—— do same for obstacles



Game State

- changes ‘currState’ to decide what to perform next,

using d gamesState table

- makes our game clearer and easier to manage

o
(== | function gameState:play() \\\\
———————————————— . | if bird.gameOver == 1 then
function gameState:start() - | self:setState("over") \
\ l |
\ | else \
--start game when 'Z' pressed -- display cumulative score |
if btn(4) then : ' - |
co : | -—target logic |
self:setState("play") , | L f
end A 1 --obstacle logic ’
‘.end _ /
~ s \ /
B ——— \ end /
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local gameState
local currState

1}

"start"

function gameState:setState(state)
currState = state
end

function gameState:over() 1
endGame () \
it btn(4) then \

restartGame () |

self:setState("start") ,
end :

- — — —— - — —



Game Loop

- runs continuously throughout game play

- process user input without blocking

- Increments frame count every loop to
control game speed

— allows for use on different hardware

Total S«ore: B

Our game loop: function TIC()

function TIC()
cls(13)
map(30,0,30,17,0,0)

if t==1 then
makeBeans ()
makeHeads ()
end

gameState:run()

s=s+1
end
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https://github.swarthmore.edu/pages/CS91S-F24/make-sbyun1-skim9/game/

Thank you

Any Questions?



